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Text S1: Model Simulations

We utilized a large ensemble of the Canadian Regional Climate Model (CanRCM4; Scinocca et al. 2016).
There are 50 realizations that are each driven by one of the 50 realizations from a large ensemble of the
Canadian Earth System Model (CanESM2; Arora et al. 2011). The CanESM2 realizations use historical
ALL forcing as defined by CMIP5 from 1950-2005 and RCP 8.5 continuing through 2100. The CanRCM4
large ensemble is run on the CORDEX (http://cordex.org) North American .44 degree (50 km) rotated pole
grid. For more details on model specifications and the coordinated modeling approach, see Scinocca et al.
(2016).

We used 3-hourly archived outputs for the period 1961-2020. Inputs for the CFFDRS calculations
(air temperature, relative humidity, wind speed, precipitation) were taken at 21 UTC to approximate the
local noon values requested by the CFFDRS routine and provided by the reanalysis dataset described below.
Precipitation was calculated as a 24-hour accumulation prior to this time. All other variables (mean, maxi-
mum, and minimum air temperature, and snow depth) were taken from the daily outputs. Vapor pressure
deficit was calculated using the daily air temperature, specific humidity, and surface pressure derived from
the model-supplied sea level pressure.

Text S2: Reanalysis Dataset

The requirement for relative humidity and wind speed data limit the use of observation datasets and we
instead utilize a reanalysis product. The Global Fire Weather Database (GFWED; Field et al. 2015) provides
a dataset of the main CFFDRS indices and their input variables with global coverage on the MERRA2
reanalysis grid (1/2 degrees latitude x 2/3 degrees longitude). The input variables are local noon values
taken from the MERRA2 reanalysis and multiple precipitation options are available. We utilized the air
temperature, relative humidity, wind speed, and snow depth provided by GFWED. CFFDRS calculations
were performed by the authors to ensure consistency with the calculations for the CanRCM4 simulations;
see later section for more details.
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Following Kirchmeier-Young et al. (2017), precipitation was taken from the Multi-Source Weighted-
Ensemble Precipitation (MSWEP) dataset (Beck et al., 2017) version 1.6. In our region of interest, this
dataset blends reanalyses and remotely-sensed observations, with additional input from surface station ob-
servations. Approximately local-noon to local-noon accumulations were calculated from the 3-hourly files
and the MSWEP data were interpolated to the MERRA2 grid to match the GFWED. In the time series
plots (Figs. 4, S3, S6), this dataset (referred to as MERRA2/MSWEP) is shown in turquoise covering 1980-
2014. The MSWEP data were not available through 2017, so a second dataset was used when 2017 values
were required. Here all variables were taken from the MERRA2 reanalysis and the precipitation was bias
corrected (via quantile-mapping) towards the MSWEP dataset. This dataset is shown in purple and covers
1980-2017.

Values for daily mean, maximum, and minimum temperature were taken from the MERRA2 reanal-
ysis and vapor pressure deficit was calculated using the reanalysis-supplied dew point temperature. The
Southern Cordillera homogeneous fire regime zone (Boulanger et al., 2014) in British Columbia (BC) com-
prises 86 grid boxes for the MERRA2 reanalysis.

Text S3: Observations

Observations of fire locations and perimeters are available for public download (under the Open Government
License – British Columbia) from the BC Wildfire Service through the BC Data Catalogue (https://
catalogue.data.gov.bc.ca). To determine area burned totals for the SCBC region, intersections of each
fire polygon and the BC Southern Cordillera polygon were calculated using the shapefiles in Python. Areas
of each intersection polygon were calculated and summed by year. Fire counts for each year were determined
by extracting fire incidents from a list of fire locations when the latitude/longitude point was within the
BC Southern Cordillera region. Area burned totals calculated from the fire locations resulted in only minor
differences from the values determined from the polygons. Restricting the homogeneous fire regime zone to
BC allows for comparison to these provincial observations datasets.

A dataset of gridded maximum (and minimum) temperature and precipitation anomalies was created
by interpolating monthly values calculated from surface station observations relative to 30 year climatology.
Observational data were obtained from Environment and Climate Change Canada, British Columbia Min-
istries, the regional hydropower utility BC Hydro and RioTinto. Data for Alberta and Yukon Territory were
obtained from Environment and Climate Change Canada and no observations from the US were incorporated.
Data underwent nominal single station quality control tests and elimination that including range checking
and consistency checks. Climatological averages for the 1981-2010 climate normal period were calculated
in two steps. First, normals were calculated for records with more than twenty two years of data within
the normal period. Second, additional normals were calculated for stations with shorter periods of record
by computing the offset in average between the short period of record in common with the target station
and the long-term average and then applying the average offset from three nearby long term stations to the
short-term average. For calculating the time series of monthly averages/sums for each station, a requirement
of 85% data availability for a monthly value to be calculated was imposed. Anomalies in temperature are
simple differences between the observed value and the normal. For precipitation, anomalies were divided
by the long term average to yield unitless normalized values suitable for interpolation. The station data
were gridded by interpolating the anomalies for a given month, year and variable using all available stations.
Interpolation was performed with thin plate splines within the R statistical software package “fields” with
spline parameters optimized through minimization of the cross validation error. Covariates were not used in
computing the spline. Data were interpolated to a grid with 0.5 degree latitude/longitude spacing covering
all of British Columbia. Spline interpolation can suffer from non-physical overshoot errors if there are insuf-
ficient constraining data, but for the region, the season, and the period of interest, station density is high
for all variables and years of analysis making overshooting unlikely.

For the detection and attribution analysis, the CRU TS3.23 dataset (Harris et al., 2014) of monthly
mean air temperature anomalies was acquired. This dataset is available for land areas on a 0.5 degree grid.
It provides the mean temperature anomalies not included in the BC station product described above and
has the advantage over a reanalysis of being based on station observations.
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Text S4: Bias Correction

The bias correction procedure applied to CanRCM4 is similar to that from Kirchmeier-Young et al. (2017)
for CanESM2. The CanRCM4 realizations were interpolated to the MERRA2 grid over southern BC and a
bias correction routine was applied. We used the n-dimensional Multivariate Bias Correction (MBCn) from
Cannon (2018) and the reader is directed to the MBCn methods paper for technical details. In general, the
MBCn framework applies a quantile-mapping bias correction technique to each variable, while maintaining
the covariance structure between all input variables.

We bias correct together all variables needed for the analyses: mid-day air temperature, relative
humidity, wind speed, and precipitation, and daily mean air temperature, maximum temperature, minimum
temperature, mean vapor pressure deficit, and snow depth. The bias correction procedure was performed
for each CanRCM4 realization. First, anomalies relative to the CanRCM4 1981-2010 climatology for each
variable were calculated on the original model grid. Next, the anomalies were bi-linearly interpolated to the
MERRA2 grid and the MERRA2/MSWEP climatology added. Finally, the quantile mapping was performed.
The temperature variables used difference climatologies, while precipitation and wind speed used ratios. It
was more stable to remap snow depth, vapor pressure deficit, and relative humidity using realized values
instead of anomalies.

The bias correction was trained using 1980-2014, with the MERRA2/MSWEP dataset described above
as the target. To apply the bias correction to the 50 CanRCM4 realizations (1961-2020), each realization
received a mapping trained with a different realization in order to preserve the internal variability of the
large ensemble.

Text S5: CFFDRS calculations

The Canadian Forest Fire Danger Rating System (CFFDRS; Wotton 2009) contains numerous indices that
describe aspects of fire weather and behavior potential. All indices increase with increasing severity. The
CFFDRS indices are calculated following the equations outlined in Van Wagner (1987) for the Fire Weather
Index (FWI) System and Forestry Canada Fire Danger Group (1992) for the Fire Behavior Prediction (FBP)
System. Calculations are performed daily and for each grid box separately. Standard initial values are used
at the beginning of the fire season and for simplicity, we do not consider overwintering. FBP calculations
are done using fuel type C-3 mature jack or lodgepole pine, which is the dominant fuel type in the BC
Southern Cordillera region (Perrakis & Eade, 2016). Each year, the calculation of the indices begins after
three consecutive days without snow cover or after three consecutive days with noon temperatures exceeding
12 ◦C, if there was insufficient winter snow cover (Kirchmeier-Young et al., 2017). As in Field et al. (2015)
for GFWED, snow cover is defined by a snow depth exceeding 1 cm. The calculations cease, signaling the
end of the fire season, on the first day (after 01 July) that has snow cover.

Text S6: Detection and Attribution

To investigate the anthropogenic influence on regional temperature in CanRCM4, a detection and attribution
analysis was performed for annual and summer (JJA) anomalies averaged over BC (Fig. S1). A regression
approach using regularized optimal fingerprinting (Ribes et al., 2013) was applied to the ensemble mean of
CanRCM4 simulations (before bias correction) and observed temperature anomalies from the CRU TS3.23
dataset (Harris et al., 2014).

The detection and attribution methodology is similar to that used in Kirchmeier-Young et al. (2017)
for CanESM2 for the one signal (all forcing) analysis, though the region and time period are slightly different.
The covariance matrix to represent internal climate variability was constructed by differencing 49 (of the 50)
realizations from the ensemble mean. Scaling factors greater than 0 indicate the all-forcing signal from the
RCM is detected in the observations. A scaling factor consistent with 1.0 implies the observed and modeled
signals are of the same amplitude, while smaller scaling factors indicate the modeled trend is greater than
that from observations.

3



References

Amiro, B. D., Logan, K. A., Wotton, B. M., Flannigan, M. D., Todd, J. B., Stocks, B. J., & Martell, D. L.
(2004). Fire weather index system componenets for large fires in the Canadian boreal forest. International
Journal of Wildland Fire, 13 (4), 391–400. doi: 10.1071/WF03066

Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L., Flato, G. M., . . . Merryfield,
W. J. (2011, mar). Carbon emission limits required to satisfy future representative concentration pathways
of greenhouse gases. Geophysical Research Letters, 38 , L05805. doi: 10.1029/2010GL046270

Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., & de Roo, A.
(2017). MSWEP: 3-hourly 0.25 global gridded precipitation (1979-2015) by merging gauge, satellite, and
reanalysis data. Hydrology and Earth System Sciences, 21 (1), 589–615. doi: 10.5194/hess-2016-236

Boulanger, Y., Gauthier, S., & Burton, P. J. (2014). A refinement of models projecting future Canadian
fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research, 44 (4), 365–376.
doi: 10.1139/cjfr-2013-0372

Cannon, A. J. (2018). Multivariate quantile mapping bias correction: An N-dimensional probability density
function transform for climate model simulations of multiple variables. Climate Dynamics, 50 , 31–49. doi:
10.1007/s00382-017-3580-6

Field, R. D., Spessa, A. C., Aziz, N. A., Camia, A., Cantin, A., Carr, R., . . . Wang, X. (2015). Development
of a Global Fire Weather Database. Natural Hazards and Earth System Sciences, 15 , 1407–1423. doi:
10.5194/nhess-15-1407-2015

Forestry Canada Fire Danger Group. (1992). Development and Structure of the Canadian Forest Fire
Behavior Predition System. In Information report st-x-3 (p. 64). Ottawa.

Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly
climatic observations - the CRU TS3.10 Dataset. International Journal of Climatology , 34 , 623–642. doi:
10.1002/joc.3711

Kirchmeier-Young, M. C., Zwiers, F. W., Gillett, N. P., & Cannon, A. J. (2017). Attributing extreme fire risk
in Western Canada to human emissions. Climatic Change, 144 , 365–379. doi: 10.1007/s10584-017-2030-0

Perrakis, D. D. B., & Eade, G. (2016). British Columbia wildfire fuel typing and fuel type layer description
(Tech. Rep.). Victoria, British Columbia: BC Wildfire Service HQ, Ministry of Forests, Lands, and Natural
Resource Operations.

Ribes, A., Planton, S., & Terray, L. (2013). Application of regularised optimal fingerprinting to attribution.
Part I: method, properties and idealised analysis. Climate Dynamics, 41 , 2817–2836. doi: 10.1007/
s00382-013-1735-7

Scinocca, J. F., Kharin, V. V., Jiao, Y., Qian, M. W., Lazare, M., Solheim, L., . . . Dugas, B. (2016).
Coordinated global and regional climate modeling. Journal of Climate, 29 (1), 17–35. doi: 10.1175/
JCLI-D-15-0161.1

Van Wagner, C. E. (1987). Development and structure of the Canadian Fire Weather Index System (Vol. 35).
Ottawa: Canadian Forestry Service. doi: 19927

Wotton, B. M. (2009). Interpreting and using outputs from the Canadian Forest Fire Danger Rating
System in research applications. Environmental and Ecological Statistics, 16 (2), 107–131. doi: 10.1007/
s10651-007-0084-2

4



1970 1980 1990 2000 2010
Year

4
3
2
1
0
1
2
3
4

m
ea

n 
te

m
pe

ra
tu

re
 a

no
m

al
y 

(C
) a

1970 1980 1990 2000 2010
Year

4
3
2
1
0
1
2
3
4

m
ea

n 
te

m
pe

ra
tu

re
 a

no
m

al
y 

(C
) b

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sc
al

in
g 

fa
ct

or

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sc
al

in
g 

fa
ct

or

Figure S1: Detection and attribution results using CanRCM4 and observations from CRU-TS3.23 for annual
mean temperature anomalies (a) and summer (JJA) mean temperature anomalies (b) averaged over British
Columbia. Time series on the left are shown for each CanRCM4 realization (pre-bias correction) in grey,
with the ensemble mean in bold black and the observations in green. Anomalies are calculated relative
to the entire period shown. Using the 1961-2015 period, scaling factors (plotted on the right with 90%
confidence intervals) were determined using a one-signal analysis comparing the all-forcing simulations with
the observed pattern.
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Figure S2: Comparison of chosen decades of CanRCM4 simulations with different forcing scenarios of the
global model. Probability distributions of annual mean temperature anomalies estimated using Gaussian
kernel densities are plotted for the late period for CanRCM4 (2011-2020; red) and the early period of
CanRCM4 (1961-1970; orange), as well as for 2011-2020 using all forcing (through 2005) and RCP 8.5 (2006
onward) simulations from CanESM2 (dark blue) and natural-only forcing simulations from CanESM2 (light
blue). Temperature anomalies are calculated for land grid boxes at each model’s native resolution and
averaged (with area weighting) over western Canada (latitudes between 48 and 70 degrees N and longitudes
between -140 and -95 degrees E). Anomalies are relative to 1981-2010.
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Figure S3: Time series of the annual July-August 95th percentile value of daily values of each CFFDRS index
[FWI (a), FFMC (b), DMC (c), DC (d), ISI (e), BUI (f), DSR (g), ROS (h), HFI (i)] and input variable
[Tair (j), wspd (k), pr (l), RH (m), VPD (n)] for each year averaged across SCBC are plotted in light grey for
each model realization and in bold black for the ensemble mean. The values from the MERRA2/MSWEP
dataset are plotted in purple and MERRA2 in turquoise. The 2017 value is identified with the horizontal
dashed line. RH uses the 5th percentile and pr uses the 50th percentile.
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Figure S4: FAR values for the July-August 95th percentile value of each CFFDRS index [FWI (a), FFMC
(b), DMC (c), DC (d), ISI (e), BUI (f), DSR (g), ROS (h), HFI (i)] and input variable [Tair (j), wspd
(k), pr (l), RH (m), VPD (n)] averaged across the BC Southern Cordillera exceeding the threshold on the
horizontal axis. The vertical dashed line represents the 2017 value used as the threshold in Fig. 3. The 90%
confidence interval (shaded) was determined through bootstrapping. FAR values are plotted only over the
range of realized values.
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Figure S5: As in Fig. S4 but for PR. Note the vertical axis uses a log scale.

9



Figure S6: Similar to Fig. S3 but plotting the length of the maximum number of consecutive days during the
fire season that exceed the climatological 90th percentile value for each CFFDRS index and input variable
noted in the top right of each subplot. DC is excluded because it tends to increase through the fire season
(Amiro et al., 2004).
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Figure S7: As in Fig. S4 but for a maximum run length exceeding the threshold on the horizontal axis. A
run is defined by consecutive days during the fire season exceeding the climatological 90th percentile value
for each CFFDRS index and input variable noted in the top right of each subplot.
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Figure S8: As in Fig. S5 but for a maximum run length exceeding the threshold on the horizontal axis. A
run is defined by consecutive days during the fire season exceeding the climatological 90th percentile value
for each CFFDRS index and input variable noted in the bottom right of each subplot. Note the vertical axis
uses a log scale.
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Figure S9: Area burned from observations (grey dashed line) and predicted from a linear regression model
using different predictor sets (colors) from the MERRA2/MSWEP dataset. Area burned in ha is plotted on
a log scale. The right panel displays the variance explained for each regression using a cross-validation. Pre-
dictors refer to the 95th percentile values used in the event attribution analysis, except for the temperatures
averaged over July (Tjul) and July-August (Tja).
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Figure S10: Time series (a, log scale) of regression-predicted annual burned area in BC for CanRCM4
realizations (grey) pre-bias correction and ensemble mean (bold), reanalysis (turquoise), and observations
(green). The dashed line marks the observed 2017 value. Probability distributions (b) for area burned
amounts (log scale) from decades outlined in corresponding colors in (a). The grey bar indicates the area
burned amount in the distribution with reduced anthropogenic influence (blue) of a corresponding percentile
to the 2017 amount (dashed line) in the distribution of the current decade, which includes anthropogenic
influence (red). The distributions in (b) are used to derive return periods in years for area burned amounts (c).
The regression model uses July mean temperature as a predictor, with shading in (b) and (c) demonstrating
the 90% confidence interval.
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Table S1: List of CFFDRS indices and input variables. Adapted from Kirchmeier-Young et al. (2017); see
Wotton (2009) for more detail.

CFFDRS Index Abbreviation Description

Fire Weather Index FWI Summary of fire potential

Fine Fuels Moisture Code FFMC Moisture in surface fuels

Duff Moisture Code DMC Moisture in decaying litter and upper layers

Drought Code DC Moisture in deep layers and large debris

Initial Spread Index ISI Potential fire spread

Build-up Index BUI Summary of available fuels

Daily Severity Rating DSR Rescaled FWI for categorical interpretation

Rate of Spread ROS Rate [m min−1] at which the fire head (leading edge) moves

Head Fire Intensity HFI Intensity [kW m−1] at the fire head

Air temperature Tair Local-noon air temperature [C]

Relative humidity RH Local-noon relative humidity [%]

Wind speed wspd Local-noon wind speed [m s−1]

Precipitation pr 24-hour accumulated precipitation at local noon [mm]

Vapor pressure deficit VPD Daily vapor pressure deficit [Pa]
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Table S2: List of R2, RMSE, and AIC for the tested regression models for the natural log of annual area
burned, using cross-validation. For the right three columns, the predictors and predictand have first had
a linear trend removed. As in Fig. S9, predictors refer to the 95th percentile values used in the event
attribution analysis, except for the temperatures averaged over July (Tjul) and July-August (Tja).

Original Detrended

Predictors R2 RMSE AIC R2 RMSE AIC

DSR 0.39 1.26 118.4 0.45 1.14 111.4

FFMC, DMC 0.39 1.26 120.2 0.43 1.17 115.0

VPD 0.47 1.17 113.3 0.46 1.13 111.0

VPD, DSR 0.45 1.20 116.7 0.46 1.12 112.5

HFI, VPD 0.43 1.22 117.8 0.45 1.14 113.6

Tair, HFI 0.44 1.21 117.5 0.47 1.12 112.0

Tair, DSR 0.45 1.20 116.6 0.49 1.10 111.1

Tair, FWI 0.45 1.20 116.9 0.48 1.11 111.4

Tair, VPD 0.44 1.21 117.3 0.43 1.16 114.9

Tjul, DSR 0.56 1.07 109.2 0.56 1.02 106.1

Tjul, HFI 0.55 1.08 110.0 0.55 1.04 106.9

Tjul, VPD 0.55 1.08 109.9 0.52 1.07 108.8

Tjul, BUI 0.58 1.05 107.9 0.57 1.01 105.2

Tjul, DMC 0.55 1.08 109.7 0.55 1.04 106.9

Tjul 0.54 1.10 108.9 0.50 1.08 107.8

Tja 0.47 1.17 113.2 0.45 1.14 111.5
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